371 research outputs found

    Molecular Contrast Optical Coherence Tomography: A Review

    Get PDF
    This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development

    Quantum trajectory analysis of a thresholdlike transition in the microlaser

    Get PDF
    In a recent microlaser experiment [K. An et al., Phys. Rev. Lett. 73, 3375 (1994)], a thresholdlike transition of intracavity mean photon number as a function of intracavity mean atom number has been observed. In this paper the behavior is explored with quantum trajectory simulations. It is shown that the transition is caused by enhanced atom-cavity Rabi interaction due to the increase of the intracavity photon number as the intracavity atom number is increased. The transition is further accentuated by the position-dependent variation of the coupling constant in the Fabry-Pérot cavity. In addition, it is demonstrated that multiatom collective effects are negligible in the microlaser under consideration, in which atoms are injected into the cavity at random times and the product of the coupling constant and atom-cavity interaction time is much less than π. In this case the analytic theory of the one-atom micromaser [P. Filipowicz et al., Phys. Rev. A 34, 3077 (1986)] can be extrapolated into the multiatom region, assuming uniform atom-cavity coupling throughout the cavity and monovelocity atomic injection. Finally, simulations are performed which account for spatial variation of coupling constant, velocity distribution of injected atoms, and spontaneous atomic decay in the actual experiment. The results are in good agreement with experiment

    Improving weak-signal identification via predetection background suppression by a pixel-level, surface-wave enabled dark-field aperture

    Get PDF
    We report the successful implementation of a surface-wave enabled dark-field aperture (SWEDA) directly on a complementary metal-oxide semiconductor sensor pixel (2.2μm). This SWEDA pixel allows predetection cancellation of a uniform coherent background. We show that the signal-to-noise ratio (SNR) of the SWEDA pixel is better than that of a single undressed pixel over a significant range of signal-to-background ratio (SBR). For a small SBR value (SBR=0.001, background intensity=3.96W/m^2, integration time=5ms), we further demonstrate that a SWEDA pixel can detect a weak localized signal buried in a high background, while conventional postdetection background subtraction cannot (improved SNR=2.2 versus SNR=0.26)

    Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation

    Get PDF
    In this work, we report a novel high capacity (number of degrees of freedom) open loop adaptive optics method, termed digital optical phase conjugation (DOPC), which provides a robust optoelectronic optical phase conjugation (OPC) solution. We showed that our prototype can phase conjugate light fields with ~3.9 x 10^(−3) degree accuracy over a range of ~3 degrees and can phase conjugate an input field through a relatively thick turbid medium (μ_sl ~13). Furthermore, we employed this system to show that the reversing of random scattering in turbid media by phase conjugation is surprisingly robust and accommodating of phase errors. An OPC wavefront with significant spatial phase errors (error uniformly distributed from – π/2 to π/2) can nevertheless allow OPC reconstruction through a scattering medium with ~40% of the efficiency achieved with phase error free OPC

    Themed issue: Optofluidics

    Get PDF
    The term optofluidics defines a growing research area that integrates optics and microfluidics in ways that enable unique strengths and advantages for a broad range of applications. The First International Conference on Optofluidics (Optofluidics- 2011) organized by Xi’an Jiaotong University and Lab on a Chip on 11–12 December 2011 featured work in this field, with an exciting two-day program of presentations and discussions. We are happy that Lab on a Chip, a major publication destination for optofluidic research, has scheduled this themed issue on Optofluidics. We are especially heartened that the optofluidics community has responded enthusiastically with a large number of excellent manuscript submissions

    A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials

    Get PDF
    In this paper, we propose and examine a new cloaking method, which was inspired by the close correspondence between a phase conjugate mirror and the interface between a pair of matched right-handed material (RHM) and left-handed material (LHM) media. Using this method, we show that a symmetric conducting shell embedded in the interface junction of an isotropic RHM layer and an isotropic negative index or LHM layer can serve as a limited cloaking structure. The proposed structure presents an anomalously small scattering cross-section to an incident propagating electromagnetic (EM) field. The interior of the shell can be used to shield small objects from interrogation. We report the results of 2D finite-element-method (FEM) simulations that were performed to verify the principle, and discuss the limitations of the proposed structure

    2-D PSTD simulation of optical phase conjugation for turbidity suppression

    Get PDF
    Turbidity Suppression via Optical Phase Conjugation (TS-OPC) is an optical phenomenon that uses the back propagation nature of optical phase conjugate light field to undo the effect of tissue scattering. We use the computationally efficient and accurate pseudospectral time-domain (PSTD) simulation method to study this phenomenon; a key adaptation is the volumetric inversion of the optical wavefront E-field as a means for simulating a phase conjugate mirror. We simulate a number of scenarios and demonstrate that TS-OPC deteriorates with increased scattering in the medium, or increased mismatch between the random medium and the phase conjugate wave during reconstruction

    Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings

    Get PDF
    We describe the use of a matched linearly chirped fiber Bragg grating (FBG) pair as a key element in an adjustable optical delay line. This delay line has the unique property that the achievable optical group delay is orders of magnitude greater (factor of 10^2 in our experiment) than the actual physical displacement. We demonstrate operation of such an optical delay line over a delay range of 3.5 mm using a pair of matched 1300-nm chirped FBGs with a bandwidth of 20 nm each
    corecore